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Rotational modes in a phononic crystal with fermion-like behavior
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The calculated band structure of a two-dimensional phononic crystal composed of stiff polymer

inclusions in a soft elastomer matrix is shown to support rotational modes. Numerical calculations

of the displacement vector field demonstrate the existence of modes whereby the inclusions and

the matrix regions between inclusions exhibit out of phase rotations but also in phase rotations.

The observation of the in-phase rotational mode at low frequency is made possible by the very

low transverse speed of sound of the elastomer matrix. A one-dimensional block-spring model is

used to provide a physical interpretation of the rotational modes and of the origin of the rotational

modes in the band structure. This model is analyzed within Dirac formalism. Solutions of the

Dirac-like wave equation possess a spinor part and a spatio-temporal part. The spinor part of the

wave function results from a coupling between the senses (positive or negative) of propagation of

the wave. The wave-number dependent spinor-part of the wave function for two superposed

waves can impose constraints on the integral of the spatio-temporal part that are reflected in a

fermion-like lifting of degeneracy in the phonon band structure associated with in-phase rotations.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4872142]

I. INTRODUCTION

Phononic crystals (PCs) comprised of periodically

arranged elastic scatterers of one material dispersed periodi-

cally throughout a different homogeneous matrix material

can strongly affect the propagation of acoustic and/or elastic

waves.1 Several studies have considered the role rigid body

rotations may play in modifying the bulk modes of propaga-

tion in the phononic structure.2–8 Sainidou et al.5 and Zhao

et al.6 revealed theoretically that rotary resonance modes can

strongly interact with Bragg gaps to yield extremely wide

absolute acoustic band gaps. Peng et al.8 proposed a one-

dimensional lumped model composed of finite-sized masses

and mass-less springs to provide an understanding of the

underlying physics behind rotary resonance in two-

dimensional (2D) solid/solid PCs. The notion of modeling a

PC from a continuum perspective (with additional degrees of

freedom, namely rotation) relates to the work done by the

Cosserat brothers over one hundred years ago.9 In 1909, the

Cosserat brothers pioneered a continuum theory of elasticity

that accounted for the rotational degrees of freedom of indi-

vidual elements in addition to the standard translational

degrees of freedom used in classical elasticity theory. In the

Cosserat model, each material element has six degrees of

freedom—three for translation and three for rotation. The

theory introduces a couple-stress tensor (a component arising

from the coupling of rotational and shear waves) that fulfills

the same role for torques as the stress tensor of classical elas-

ticity plays for forces. Ultimately, Cosserat continuum elas-

ticity theory predicts that rotational degrees of freedom (e.g.,

rotational wave modes) can strongly modify the dispersion

of shear waves.10 Several studies have characterized rota-

tional elastic waves in three-dimensional (3D) granular

structures comprised of pre-compressed, regular arrange-

ments of spherical elastic particles.11–13 In these works, the

Hertz-Mindlin contact model is used to represent the

connection between the elements of the structure. The exis-

tence of transverse vibrations in the structures necessitates

the consideration of rotation for the individual spherical par-

ticles. Rotational degrees of freedom in the structure showed

individual rotational modes as well as coupled rotary/transla-

tional modes in the dispersion relations.11,12

It is known that Cosserat elasticity restricted to rota-

tions only provides a framework for the alternative descrip-

tion of the electron.14 It has also been shown that rotational

waves in an isotropic continuous elastic solid can be

described within the formalism of the Dirac equation pro-

viding a classical interpretation of relativistic quantum

mechanics.15 Conical Dirac dispersions or Dirac-like behav-

ior in photonic crystals (the electromagnetic wave counter-

part of PC)16–19 and PC20,21 have also recently received

attention. Longhi22 and Ref. 17 provide a derivation of the

1D Dirac’s equation from the coupled modes equations of a

lattice of waveguides in terms of two sublattices. In these

optical waveguide sublattice models, the discrete couple

mode equations form a set of two equations involving dis-

crete finite differences. These finite discrete differences are

transformed in the long wavelength limit into continuous

derivatives to arrive at a continuous 1D Dirac equation,

which solutions are two-component spinors. Longhi23 also

proposed a photonic analogue of the relativistic Dirac oscil-

lator by considering the propagation of electromagnetic

wave in continuous 1D Bragg gratings.

While phonons are bosons, the isomorphism between

Cosserat media supporting rotational degrees of freedom and

the Dirac formalism (relativistic wave equation representing

spin 1=2, fermion, particles24) suggests the possibility of char-

acterizing rotational waves in PC within a fermion-like

formalism.

Here, we report on the investigation of a 2D PC consti-

tuted of stiff polymer inclusions in a soft elastomer matrix.
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The 2D PC composed of a square array of polystyrene (PS)

inclusions in a polydimethylsiloxane (PDMS) elastomer ma-

trix is shown to support rotational waves. Of particular inter-

est are modes where the PS inclusions and the region of the

matrix separated by the inclusions rotate out of phase but

also in phase. Following Peng et al.,8 who demonstrated that

a 1D lumped mass model can be used to describe rotational

modes in a 2D PC, we introduce a 1D mass spring phononic

structure that can also support rotational waves. The 1D

model is used to reproduce the dispersion relations of the 2D

system in a certain range. The 1D model is further analyzed

to provide a physical interpretation of the origin of the bands

associated with rotational modes. For this, the classical wave

equation for rotational waves in the 1D phononic structure is

rewritten in the form of Dirac-like equations. The wave func-

tions solutions of these equations take on spinor character

associated with the sense of propagation of the wave (posi-

tive and negative frequency). The degeneracy or non-

degeneracy of the band structure is related to constraints

imposed by the spinor-part of the wave function on the inte-

gral of the spatio-temporal part of the wave function.

The paper is organized as follows. In Sec. II, we intro-

duce a 2D PC composed of rod-like, stiff polymer inclusions

of square cross-section embedded in a soft elastomer matrix.

It is shown computationally that this PC exhibits a band

structure that supports rotational waves. The rotational bands

are identified by calculating the displacement vector field of

individual modes. Two types of rotational modes are

observed, namely modes that are characterized by out of

phase but also in phase rotational motion in the inclusions

and the matrix regions between inclusions. In Sec. III, we

present a 1D harmonic phononic structure that can support

rotational waves. It was shown that a 1D model can be used

to reproduce some of the bands associated with rotational

modes in 2D PC and provide an interpretation of their physi-

cal origin.8 Here, we rewrite the rotational wave equation

within Dirac formalism. In particular, we introduce an exact

square root expression for the discrete Laplacian operator of

the 1D model that leads to a Dirac-like equation involving

4x4 matrix operators. We consider several cases of rotational

waves and obtain their corresponding wave functions in the

form of the product of a spinor part (a four-spinor) and a

spatio-temporal part. We then consider the superposition of

two rotational waves and the constraint the spinor structure

of the rotational wave functions imposes on the integral of

the spatio-temporal part. This fermion-like behavior is

related to the characteristics of the band structure of the 1D

and subsequently 2D phononic structures and in particular to

the band associated with the in-phase rotational mode. In

Sec. IV, conclusions are drawn as to the observability of

fermion-like behavior and implications for the development

of future functionalities of PC.

II. TWO-DIMENSIONAL PHONONIC CRYSTALS
SUPPORTING ROTATIONAL WAVES

A. Model and method

The PC of interest is composed of a square array of

PS cylinders with square cross section embedded in a

homogeneous, elastic matrix of PDMS. This combination of

materials offers distinctive elastic band structures with

modes corresponding to rotational waves. PS and PDMS

are unique due to their sharp contrast in transverse speed

of sound and low-density. The elastic parameters for

PS and PDMS are as follows: qPS¼ 1050 kg/m3,

CL, PS¼ 2350 m/s, CT, PS¼ 1230 m/s, qPDMS¼ 965 kg/m3,

CL, PDMS¼ 1100 m/s, and CT, PDMS¼ 200 m/s, where q, CL,

and CT denote density, longitudinal speed of sound, and

transverse speed of sound, respectively. The lattice constant

of the PC is a¼ 1 cm. The length of the edge of the square

inclusion is 0.6 cm for a filling fraction ff¼ 0.36 (see Figure

1(a) for schematic). The structural mechanics module of the

commercial software package COMSOL Multiphysics is

utilized to generate the phonon band structure of the PC and

visualize displacement vector fields for specific Eigen

modes.

FIG. 1. (a) Schematic representation of the direct space and reciprocal space

unit cells of the PC composed of a square lattice of PS inclusions (square

cross-section) embedded in a PDMS matrix. (b) Phonon band structure

(xy-modes) along CM-direction in reciprocal space.
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B. Band structure and eigenmodes of the 2D
phononic crystal

The dispersion diagram along the CM-direction in recip-

rocal space ([11]-direction in direct space) is shown in

Figure 1(b). Longitudinal and transverse acoustic branches

stem from the C-point in the dispersion diagram. These

bands span the width of the 1st Brillouin zone and fold back

into the zone at the boundary (M-point), thus yielding multi-

ple longitudinal and shear optical branches. Several hybrid-

ization gaps are observable between the longitudinal

acoustic branch and higher frequency optical modes possess-

ing similar symmetry, several of which possess mixed trans-

lation and rotational character.

Our specific interest in Figure 1(b) is identifying rota-

tional modes with pure rotational character. Modes “A,”

“B,” and “C” in Figure 1(b) at the C-point possess this char-

acteristic. We illuminate these Eigen modes in Figure 2 with

finite-element calculations of displacement vector fields.

For mode A, along the [11]-direction, alternating

regions of PS and PDMS exhibit out of phase rotations. This

is also the case for mode C. Similar modes have been

observed in a steel-epoxy solid/solid PC.8 In contrast, the

mode B shows that the PS and PDMS regions are rotating in

phase. The observation of a well-defined in-phase rotational

mode at low frequency is enabled by the very low value of

the transverse speed of sound in the PDMS compared to that

of the PS inclusions. Indeed, we have verified that increasing

CT, PDMS results in a shift of the mode “B” toward higher fre-

quencies where this mode will hybridize with other modes.

To elucidate the origin of the two types of rotational modes

observed in the 2D PC, we use a 1D Cosserat-like microme-

chanics model. It was demonstrated in Ref. 8 that such a 1D

model can reproduce the dispersion relations associated with

rotational modes in a 2D PC composed of a square array of

solid inclusions in a solid matrix.

III. ONE-DIMENSIONAL DISCRETE COSSERAT-LIKE
MICROMECHANICS MODEL

A. Model and method

Vassiliev et al.25,26 have studied a discrete linear one-

dimensional micromechanics model that includes longitudi-

nal, shear, and rotational degrees of freedom. This 1D

discrete Cosserat-like lattice model consists of an infinite

chain of square block elements (Cosserat elements) con-

nected with multiple harmonic springs. Each element in the

model is considered to have two translational degrees of

freedom (displacement in the x and y directions) and one

rotational degree of freedom (rotation about an axis perpen-

dicular to the xy-plane). Figures 3(a) and 3(b) show the

repeatable unit cells for the monoblock and diblock Cosserat

lattice models, respectively. Figure 3(a) shows periodicity

(h) and Figure 3(b) shows periodicity (2h). The diblock sys-

tem mimics the behavior of alternating extended regions of

PS and PDMS connected via elastic springs.

Three different harmonic springs (spring constants k0,

k1, and k2) connect different parts of the Cosserat elements.

FIG. 2. Displacement vector field (arrows) of the PS/PDMS phononic crys-

tal corresponding to Eigenmodes “A,” “B,” and “C” in Figure 2(b). The grey

color-scale (not shown) corresponds to the z-component of the curl of the

displacement field.

FIG. 3. Schematic illustration of the discrete Cosserat-like micromechanics

model. (a) Unit cell of the monoblock model with Cosserat elements

(blocks) connected by three types of harmonic springs (spring constants k0,

k1, and k2). Each Cosserat element possesses translational longitudinal (u),

shear (v), and rotational (u) degrees of freedom. (b) Unit cell of a diblock

model.

163510-3 Deymier et al. J. Appl. Phys. 115, 163510 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

150.135.172.76 On: Wed, 05 Aug 2015 16:41:27



The Cosserat element in Figure 3(a) has mass (m) and

moment of inertia (I). The Cosserat elements that make-up

the diblock unit cell have masses (m1 and m2) and inertial

moments (I1 and I2). For Figure 3(a), the Cosserat element in

the nth unit cell has x-displacement (un), y-displacement (vn)

and rotation component (un). un and vn represent displace-

ments associated with longitudinal and transverse vibrations,

respectively. The potential energy associated with the elastic

connections of elements (n) and (nþ 1) in the monoblock

chain is written as follows:

En;nþ1 ¼
1

2
K0 unþ1 � unð Þ2

þ 1

2
K1 vnþ1 � vnð Þ þ

h

2
unþ1 þ unð Þ

� �2

þ 1

2
K2 unþ1 � unð Þ2; (1)

where K0 ¼ k0

h2 þ 2k1

l2 þ
2k2l2

ld 4

� �
, K1 ¼ 2k2 2að Þ2

ld 4

� �
, K2 ¼ 2a2k1

l2

� �
,

l ¼ h� 2að Þ, and ld ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þ ð2aÞ2Þ

q
. Accordingly, the

equations of motion for the Cosserat element in the nth unit

cell of the monoblock lattice are written as

m
d2un

dt2
¼ K0 unþ1 � 2un þ un�1ð Þ; (2)

m
d2vn

dt2
¼ K1 vnþ1 � 2vn þ vn�1ð Þ þ hK1

2
unþ1 � un�1ð Þ; (3)

I
d2un

dt2
¼ K2 unþ1 � 2un þ un�1ð Þ þ

hK1

2
vn�1 � vnþ1ð Þ

� h2K1

4
unþ1 þ 2un þ un�1ð Þ: (4)

B. Band structure of the 1D micromechanics model

Utilizing Eqs. (1)–(4), we numerically generate phonon

band structures for the monoblock and diblock systems by

implementing the finite-difference scheme described in Ref.

27 for a similar 1D system. For the monoblock model, we

chose m¼ 25 g, a¼ 0.35 cm, h¼ 1.414 cm, k0¼ 55 000 N�m,

k1¼ 9500 N�m, and k2¼ 6500 N�m. The numerical values of

these parameters are chosen to establish a semiquantitative

correspondence between the band structure of the 1-D block

systems and that of the 2-D PC. In particular, we obtain

semiquantitative agreement in (a) the ordering of the bands

(modes A, B, and C), (b) the symmetry of the modes as well

as (c) the order of magnitude of the frequencies of these

modes. The diblock system is identical to the monoblock

system except for the mass (and consequently moment of

inertia) of the Cosserat elements (m1¼ 27 g and m2¼ 23 g).

Figures 4(a) and 4(b) shows the dispersion diagrams for the

monoblock and diblock systems, respectively.

The band structure of the monoblock lattice contains

three bands corresponding to the three degrees of freedom

(u, v, and u). The bands rendered with unfilled circles

support modes with rotational character (as shown by

Eqs. (3) and (4)) while the band comprised of solid circles

corresponds to modes with translational character only (see

Eq. (2)). The points marked by “A,” “B,” and “C” corre-

spond to modes with pure rotational character. The band

structure of the diblock system (Figure 4(b)) exhibits the

characteristic band folding associated with the doubling of

the period. We have retained on that figure the location of

the monoblock rotational modes (eigenmodes “A,” “B,” and

“C”). At the origin, the rotational mode marked by “B” is

characterized by each block rotating in phase with its neigh-

bor. Modes “A” and “C” correspond to rotational waves

whereby alternating blocks rotate with a p phase shift. These

modes are isomorphic to those observed in the more complex

band structure of the 2D PC. We subsequently employ the

1D model to provide additional physical understanding of

the rotational modes and in particular in-phase rotational

modes. More specifically, we are interested in interpreting

mode “B” with in-phase rotation of the PS and PDMS

domains. Since the nature of mode “B” is the same for the

monoblock and diblock systems, we investigate it in the case

of a simplified monoblock model using the formalism of

Dirac.

IV. APPLICATION OF DIRAC FORMALISM TO
ROTATIONAL WAVES

A. Discrete monoblock model of rotational waves

For the sake of simplicity, we restrict this model to the

propagation of rotational waves by allowing only rotation of

the blocks about their center of mass and by constraining

shear and longitudinal displacements in the monoblock lat-

tice. The equation of motion associated with the rotational

degrees of freedom (Eq. (4)) then takes the simpler general

form

I
@2un

@t2
¼ K01 unþ1 � 2un þ un�1ð Þ � K02un; (5)

FIG. 4. Band structure of the monoblock (a) and of the diblock (b) Cosserat

1D discrete lattices. Modes “A” and “C” in (a) and (b) correspond to succes-

sive Cosserat elements rotating out-of-phase. Oppositely, mode “B” shows

successive Cosserat elements rotating in-phase.
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K01 ¼ K2 � h2K1

4
, and K02 ¼ h2K1. Dividing the equation by I

yields our rotational wave equation

@2un

@t2
� b2 unþ1 � 2un þ un�1ð Þ þ a2un ¼ 0 (6)

with b2 ¼ K1
0

I and a2 ¼ K2
0

I . We will consider three cases.

For case I, K01, and K02 are taken as positive constants. For

case II, a2 ¼ 0 (i.e., K02 ¼ 0Þ. For case III, we take K2 ¼ 0

(i.e., k1 ¼ 0, that is, only harmonic springs between opposite

vertices of the blocks are considered). Under this last condi-

tion, K01 < 0 and we take b ¼ ib0 (b2 ¼ �b02Þ and a ¼ 2b0

(a2 ¼ 4b02Þ with b0 > 0: Note that the 1-D system studied

numerically in Sec. III falls into the case I of the subsequent

Dirac formalism.

B. Dirac equation and solutions for rotational waves

Equation (6) involves the second derivatives with

respect to continuous time and the discrete second derivative

with respect to position of the angular degree of freedom.

Here, following the approach of Dirac in linearizing the rela-

tivistic Klein-Gordon equation, we wish to derive a wave

equation in terms of first order spatial and temporal deriva-

tives. To do this, we need to rewrite the Laplacian,

Dun ¼ unþ1 � 2un þ un�1, in a “square root” form:

Dun ¼ DðDunÞ. This can be done exactly by introducing the

following first order differential operator:

D ¼ e1D
þ þ e2D

� ¼ 0 1

0 0

� �
Dþ þ 0 0

1 0

� �
D�: (7)

In Eq. (7), Dþun ¼ unþ1 � un and D�un ¼ un � un�1 are

the forward and backward finite differences acting now on a

two-vector. The 2� 2 matrices e1 and e2 satisfy the condi-

tions e1e1 ¼ e2e2 ¼ 0 and e1e2 þ e2e1 ¼ I with I represent-

ing the 2� 2 identity matrix. This formalism permits the

exact and formal definition of the “square root” of the dis-

crete Laplacian.

The Dirac-like equation for rotational waves corre-

sponding to case I then takes the form

rx � I
@

@t
þ ibry � e1D

þ þ e2D
�	 


6iaI � I

� �
w ¼ 0; (8)

where rx and ry are the 2� 2 Pauli matrices:
0 1

1 0

� �
and

0 �i
i 0

� �
, respectively. The parameter a plays the role of

mass in the relativistic Dirac equation. Applying the outer

product � leads to 4� 4 matrices and w is a four-vector:

w ¼

w1n

w2n

w3n

w4n

0
BB@

1
CCA. This four component representation is the

consequence of the discrete nature of the Laplacian. In con-

trast, with a continuous Laplacian, there is no distinction

between forward and backward derivatives and one would

only need to use a two component representation. This is the

case in the long wavelength limit of Sec. IV C. In this limit,

having a two component spinor indicates that there is a

coupling between waves propagating in opposite directions

(positive or negative) along the chain of blocks. When con-

sidering the short wavelength four component spinor solu-

tion, the first two components represent propagation of

waves in the positive direction and the next two components

propagation in the negative direction. The two components

for the positive direction and the two components from the

negative directions reflect a lifting of degeneracy due to

asymmetry of the forward and backward finite different in

the discrete Dirac equation. The solution of Eq. (8), namely

w, is automatically a solution of Eq. (6), i.e., u but the con-

verse is not true. As will be seen later, the directions of prop-

agation of the wave are expressed separately in the Dirac

wave function. The 6 corresponds to choices of the sign

of the parameter a (i.e., choice of positive or negative

“mass”). Subsequently, we choose the negative value with-

out consequence on the conclusions drawn. Equation (8)

becomes

C
@

@t
þ b ADþ þ BD�f g � iaI

� �
w ¼ 0: (9)

C, A, B, and I are the 4� 4 matrices

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0
BBBBB@

1
CCCCCA;

0 0 0 1

0 0 0 0

0 �1 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA;

0 0 0 0

0 0 1 0

0 0 0 0

�1 0 0 0

0
BBBBB@

1
CCCCCA;

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBBBB@

1
CCCCCA:

It is easily verifiable that CC ¼ I, AA ¼ BB ¼ 0,

ABþ BA ¼ �I, and C ADþ þ BD�ð Þ þ ADþ þ BD�ð ÞC ¼ 0,

which are the conditions necessary to recover the wave

Eq. (6) by applying the operator in Eq. (9) twice (with appro-

priate 6 sign). Equation (9) is the basis for our discussion of

fermion-like excitations in phononic structures.

Seeking solutions in the form of plane waves, wjn ¼ aj

e�ixteiknh with j¼ 1, 2, 3, 4. x and k are the angular fre-

quency and wave number, respectively. We remind the

reader that “h” is the spacing distance between blocks.

Equation (9) yields the system of equations

�iaa1 � ixa3 þ b eikh � 1ð Þa4 ¼ 0

�iaa2 þ b 1� e�ikhð Þa3 � ixa4 ¼ 0

�ixa1 � b eikh � 1ð Þa2 � iaa3 ¼ 0

�b 1� e�ikhð Þa1 � ixa2 � iaa4 ¼ 0:

8>>>>><
>>>>>:

(10)

This system of equation admits two doubly degenerate Eigen

values
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x ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2 eikh � 1ð Þ 1� e�ikhð Þ

q

¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b2sin2 kh

2

r
: (11)

The negative frequency can be interpreted physically as

follows.28 Since the angular field ought to be a real-valued

quantity, it can be written as the sum of a complex term and

its complex conjugate. The negative frequency is associated

with the complex conjugate term.

The rotational mode at the origin, k¼ 0, has a finite fre-

quency and is isomorphic to mode “B” observed in the 2D

and 1D phononic structures.

We note that Eq. (11) gives two branches with positive

and negative frequencies that do not intersect at the origin

unless a ¼ 0. The dispersion relations are periodic and

defined in the first Brillouin zone: k 2 � p
h ;

p
h

� �
. Choosing the

positive or negative branches of the dispersion relations, we

determine the four Eigen vectors for case I

a1

a2

a3

a4

0
BBB@

1
CCCA ¼ a0

�
� eikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� b eikh

2 � e�ikh
2ð Þ

q

7ie�ikh
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b eikh

2 � e�ikh
2ð Þ

q
6eikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b eikh

2 � e�ikh
2ð Þ

q
þ
þ ie�ikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� b eikh

2 � e�ikh
2ð Þ

q

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: (12a)

a1

a2

a3

a4

0
BBBB@

1
CCCCA ¼ a0

�
þ

eikh
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b eikh

2 � e�ikh
2ð Þ

q
þ
þ

ie�ikh
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� b eikh

2 � e�ikh
2ð Þ

q
þ
þ

eikh
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� b eikh

2 � e�ikh
2ð Þ

q
�
þ

ie�ikh
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ b eikh

2 � e�ikh
2ð Þ

q

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: (12b)

The upper signs in Eqs. (12a) and (12b) correspond to the

positive branch of the wave function and the lower signs to

the negative branch. The Eigen vectors given by Eqs. (12)

have the characteristic property of being 4p periodic in k,

which is often associated with spinors. In Sec. IV C, we

investigate several limits of the Eqs. (9) and (10) and Eigen

values and Eigen vectors given by Eqs. (11) and (12).

In the limit a! 0 (case II), Eq. (11) reduces to the well-

known dispersion relation for the one-dimensional harmonic

chain.

C. Long wavelength limit and related systems

In the long wavelength limit, k ! 0, the system of Eq.

(10) reduces to first order to

aa1 þ xa3 � bkha4 ¼ 0

aa2 � bkha3 þ xa4 ¼ 0

xa1 þ bkha2 þ aa3 ¼ 0

bkha1 þ xa2 þ aa4 ¼ 0;

8>>><
>>>:

(13)

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � ðbkhÞ2

q
. By setting a1 ¼ a2 ¼ a01 and

a3 ¼ a4 ¼ a02, we obtain the reduced system of two linear

equations

aa01 ¼ �ðx� bkhÞa02
xþ bkhð Þa01 ¼ �aa02:

(
(14)

We could have obtained the same reduction in order of the

system of equation by adding the first two equations in the

system of Eqs. (13) and the last two equations and setting

a01 ¼ a1 þ a2 and a02 ¼ a3 þ a4. This reduction from a fourth

order to a second order system of linear equations reflects

the fact that in the long wavelength limit the difference

between forward and backward finite differences is lost. The

difference between the sublattices supporting the two types

of spatial finite differences is lost in the continuum limit.

The four-spinor reduces to a two-spinor,
a01
a02

� �
, which

would be solutions of the continuous wave equation

rx
@

@t
þ ibry

@

@x
6iaI

� �
w ¼ 0: (15)

The Eigen values are given by x ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2ðkhÞ2

q
and

the two-spinor corresponding to the positive branch takes the

form

a01
a02

 !
¼ a0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� bkh
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ bkh
p

 !
: (16)

We also note that if a ¼ 0 (case II), the system of

Eq. (14) reduces to
x� bkhð Þa01 ¼ 0

xþ bkhð Þa02 ¼ 0



. These are Eigen

values solutions of the continuous wave equation

rx
@

@t
þ ibry

@

@x

� �
w ¼ 0: (17)

We obtain two solutions for the angular velocity of the plane

wave, x ¼ 6bkh. These correspond to plane waves propa-

gating in the positive and negative directions. In case II, the

components of the two-spinor, a01 and a02, are now independ-

ent of each other, which is the amplitude of the plane wave

propagating in the positive direction (positive frequency) is

independent of that of the wave propagating in the opposite

sense (negative frequency). By opposite sense, we mean

waves propagating along different directions. When a 6¼ 0,

from Eq. (16), we see that the components of the two-spinor,

a01 and a02, are not independent of each other. This indicates

that the senses of propagation of a wave (positive or nega-

tive) are not independent of each other. It is the parameter a
that couples those senses. The quantity a leads to a coupling

between the components (sense of wave). Equation (6) is iso-

morphic to the equation of propagation of waves in a one-

dimensional discrete harmonic chain with a distribution of

scattering centers on each site of the chain.1 Each scattering

center is associated with a perturbation: V ¼ a. It is well
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known that if one considers a 1-D harmonic chain with a sin-

gle local perturbation, an incident wave propagating in the

positive direction will be scattered into a transmitted wave

and a reflected wave. The reflected wave is now propagating

in the negative direction and its amplitude is related to that

of the incident wave through the reflection coefficient. In the

system described by Eq. (6), multiple scattering at every site

results in the coupling between the senses of propagation of

the waves.

Taking the limit a! 0 (case II) in Eq. (12a), the four-

spinor solution for the positive branch of the band structure

becomes

a1

a2

a3

a4

0
BBBB@

1
CCCCA ¼ a0

�ieikh
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b eikh

2 � e�ikh
2ð Þ

q
�ie�ikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b eikh

2 � e�ikh
2ð Þ

q
eikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b eikh

2 � e�ikh
2ð Þ

q
�e�ikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b eikh

2 � e�ikh
2ð Þ

q

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ a00ðkÞ
eip

2
eikh

4

e�ikh
4

 !

�eikh
4

e�ikh
4

 !
0
BBBBB@

1
CCCCCA: (18)

In Eq. (18), we have separated the four components of the

spinor into two groups that correspond to the “positive” and

“negative” wave senses. This is still a four-spinor due to the

discrete nature of the system and the differentiation between

forward and backward finite differences (i.e., due to the two

sublattices on which the finite differences are defined). We

also note that the first group (positive sense) is p
2

out of phase

with the second group (negative sense). It is only in the long

wavelength limit that the two senses become independent.

For instance, we can reduce the four-spinor in Eq. (18) to the

form of a two spinor:
eip

2ðeikh
4 þ e�ikh

4 Þ
ð�eikh

4 þ e�ikh
4

 !
, which in the long

wavelength limit reduces to
2eip

2

0

� �
. Note that Eq. (18) was

obtained in the case of the positive branch of the dispersion

relations. When considering the negative branch, one finds

the following for the reduce two-spinor in the long wave-

length limit:
0

2

� �
. The positive sense is decoupled from the

negative sense. It is worth noting that even though in the

long wavelength limit senses are decoupled, they are still p
2

out of phase. Such an observation could not be made by solv-

ing Eq. (17) directly. This observation originates from the

sublattice dependent spatial finite differences of the discrete

equations. Similar observations are made for all the Eigen

vectors given by Eqs. (12a) and (12b).

In case III, the Eigen values are obtained as positive and

negative dispersion relations x ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b02cos2ðkh

2
Þ

q
and the

four-spinor of Eq. (12a) reduces to

a1

a2

a3

a4

0
BB@

1
CCA ¼ a0

ffiffiffiffiffiffiffi
2b0

p

�
� eikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin

kh

2

� �s

7ie�ikh
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin

kh

2

� �s

6eikh
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin

kh

2

� �s

þ
þ ie�ikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin

kh

2

� �s

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

(19a)

a1

a2

a3

a4

0
BB@

1
CCA ¼ a0

ffiffiffiffiffiffiffi
2b0

p

�
þ eikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin

kh

2

� �s

þ
þ ie�ikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin

kh

2

� �s

þ
þ eikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin

kh

2

� �s

�
þ ie�ikh

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin

kh

2

� �s

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: (19b)

Again in Eqs. (19a) and (19b), the upper and lower signs

refer to the positive and negative dispersion relations.

D. Constraints on wave functions

We have determined that when linearizing the wave

equation for rotational waves, the solutions have spinor char-

acter. The spinor character is associated with the separation

of the sense of propagation of waves along the one-

dimensional axis of our system. In addition, in the case of

the discrete one-dimensional system, the separation of the

spatial derivative operator into direction (sublattice) sensi-

tive finite differences introduces a possible phase shift

between the two senses of propagation. In this section, we

explore the consequence of the phase difference between

spinor components (wave sense) and band structure.

We first write the wave function solution of the Dirac-

like equation in the general form w x; kð Þ ¼ nðkÞ/ðx; kÞ,
where nðkÞ is the spinor part and / x; kð Þ is the spatio-

temporal part of the wave function. For continuous systems,

/ x; kð Þ ¼ e�ixteikx; and for discrete systems, / x; kð Þ
¼ e�ixteiknh. We consider some Hermitian operator, Q, corre-

sponding to some observable that acts only on the spinor part

of the wave function, then: w�Qw ¼ n�/�Qn/
¼ ðn�QnÞ/�/. Let us now treat the case of the linear super-

position of two wave functions, w ¼ wA þ wB with

wAðxA; kAÞ and wBðxB; kBÞ. The observable for the superpo-

sition of the two waves takes the form

w�Qw ¼ n�AQnA

� �
/�A/A þ n�BQnB

� �
/�B/B

þ n�AQnB

� �
/�A/B þ n�BQnA

� �
/�B/A: (20)

The first two terms are the observables for each wave. The

last two terms correspond to interference terms that should

add to zero for an additive operator Q (i.e., an operator for
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which the observable for a superposition of states is the sum

of the observables of individual states).

We will explore initially superpositions of two waves

with the same wave vector kA ¼ kB ¼ k as well as assuming

that the two solutions belong to the same positive branch of

the dispersion relation. Since we have seen that the spinor

components of the wave function for the three cases I, II,

and III depend on k only, we can rewrite the Eq. (20) as

w�Qw ¼ n�Qnð Þ/�A/A þ n�Qnð Þ/�B/B

þ n�Qnð Þf/�A/B þ /�B/Ag: (21)

Finally since the functions / are extended over time and

space, we calculate the observable by integrating Eq. (21)

over these variables. Provided that the observables of the

operator Q are non-zero (i.e., n�Qn 6¼ 0), then the additive

property of the observables leads to the following condition

on the integral of the spatio-temporal part of the wave

function:ð ð
/�A/B þ /�B/A

� �
dtdx ¼

ð ð
ei xA�xBð Þt þ e�i xA�xBð Þtð Þdtdx

¼ 2

ð
dx

ð
dt cos xA � xBð Þt ¼ 0:

(22)

Such a condition is possible only if xA 6¼ xB. Therefore,

when there exists a Hermitian operator that operates on the

spinor-part of the wave function with a value for the corre-

sponding observable different from zero, then the integral of

the spatio-temporal part of the wave function is equal to

zero. This means that for the same value of k, the frequency

is non-degenerate and the band structure should possess two

non-degenerate branches. Otherwise, if the spinor-related

observables are zero, there is no constraint on the integral of

the spatio-temporal part of the wave function. The band

structure may possess degenerate points where two branches

cross at the same frequency.

We use the operator Q given by the 4� 4 matrix: C ¼
rx � I that acts only on the spinor part of the wave function.

For case I, using the four-spinor given by Eq. (12a), we get

n�Qn ¼ �4a2
0a. Since this quantity is different from zero,

then for all wave number, k, there cannot be any degenerate

points in frequency within the Brillouin zone.

In the limit a! 0, corresponding to case II, the quantity

n�Qn ¼ 0 for all wave numbers. This indicates that the

spinor part of the wave function does not impose any con-

straint on the integral of the spatio-temporal part of the wave

function. Degenerate and non-degenerate branches are possi-

ble in the band structure but non-degeneracy is not imposed

by the spinor characteristics of the wave function. In the last

case, namely case III, n�Qn ¼ �8a2
0b
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðhk

2
Þ

q
. This

observable is non-zero for all wave numbers k 2 0; ph
� �

. The

band structure does not show any degenerate point as

imposed by the spinor part of the wave function. At the edge

of the Brillouin zone, k ¼ p
h, n�Qn ¼ 0, which indicates that

there could exist a degenerate point at that location. This is

indeed the case.

We now explore superpositions of two waves with the

same wave vector kA ¼ kB ¼ k but corresponding to the pos-

itive and the negative branches of the dispersion relation.

In case I, we find n�AQnB ¼ �n�BQnA ¼ �ia2
08b sin kh

2
.

These quantities are different from zero for k 6¼ 0. The in-

terference terms in Eq. (20) will then add to zero whenÐ Ð
/�A/B � /�B/A

� �
dtdx ¼ 0: This condition is always sat-

isfied since we have chosen xA ¼ �xB ¼ x. At k ¼ 0, the

spinor part of the wave function does not impose con-

straints on the integral of the spatio-temporal part. We

need to keep in mind that here those two wave functions

have xA ¼ �xB ¼ x.

When kA ¼ kB ¼ k and xA ¼ �xB ¼ x, case II similarly

to case I does not lead to any constraints on the spatio-

temporal part of the wave function. Finally, for case III, we

determine: n�AQnB ¼ n�BQnA ¼ 0, which leads to the same con-

clusions as the other two cases. These results are completely

consistent with those found when we assume kA ¼ kB ¼ k and

two superposed waves with frequency from the same positive

branch.

In summary, the degeneracy of bands at a given wave

number, k, depends on the spinor part of the wave function.

In the case of rotational waves corresponding to cases I and

III, the spinor part of the wave function does indeed con-

strain the integral of the spatio-temporal part of the wave

function leading to non-degenerate Eigen values for all (case

I) or most (case III) wave numbers. In the case II of the usual

1D wave equation (a ¼ 0), the spinor part of the wave equa-

tion imposes no constraint on the integral of the spatio-

temporal part. In this last case, degeneracy or non-

degeneracy of the band structure is unrelated to the spinor

part of the wave function.

It is important to recall that the third band in the band

structure of the monoblock lattice corresponds to the band an-

alyzed analytically in this section. Mode “B” where blocks

rotate in phase corresponds to the long wavelength limit of

that band. In particular, this band corresponds to the rota-

tional waves of case I and/or III. We have just shown that,

at this point, degeneracy of rotational modes (i.e.,

x ¼ �x ¼ 0) is forbidden due to the characteristics of the

spinor part of the wave function. The fact that this rotational

mode is occurring with a non-zero frequency at the C point is

indicative of a mode that has spinor structure and therefore of

dispersion relation that results from fermion-like behavior.

V. CONCLUSIONS

We have analyzed computationally a 2D phononic crys-

tal composed of a square array of cylindrical inclusion

(square cross section) of PS embedded in a soft elastomeric

matrix of PDMS. The calculated band structure of this sys-

tem, along the CM direction of the Brillouin zone, possesses

several branches that support waves with rotational degrees

of freedom. In particular, we identify a band that has a

non-zero frequency at the C point. Analysis of this mode

indicates that this is a pure rotational mode where the PS

inclusions and the PDMS regions separating the inclusions

undergo rotational oscillations in phase. This mode is identi-

fied to correspond to the fermion-like mode studied using a
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1D discrete block-spring model. First, the 1D model is used

to reproduce the dispersion relations of the 2D system in a

certain range. This 1D discrete Cosserat-type block-spring

model is then analyzed within the Dirac’s formalism. We

have shown that rotational waves are characterized by wave

functions that include a spinor part and a spatio-temporal

part. The spinor part is related to the coupling between the

senses of wave propagation. The spatio-temporal part of the

wave function retains its plane-wave character. By calculat-

ing observables associated with operators that operate only

on the spinor part of the wave function, for the superposition

of two waves, we have identified conditions that constrain

Eigen states of the system. In particular, we have identified

conditions that impose the lifting of the frequency degener-

acy at the origin of the Brillouin zone. This observation sug-

gests that rotational modes in PC may possess fermion-like

(or spinor-related) characteristics, which effects can be

observed in their band structure. As mentioned before, the

spinor-part of the rotational wave functions reflects a cou-

pling between positive and negative sense for the propaga-

tion of the wave. The fermion-like behavior that we

characterized lifts the degeneracy between bands with posi-

tive negative frequency at the origin of the Brillouin zone.

From a practical point of view, the fermion-like behav-

ior we report can also be observed in phononic crystals com-

posed of a square array of cylindrical inclusions with

circular cross sections. Furthermore, the observation of the

in-phase rotational mode at low frequency is made possible

by the very low transverse speed of sound of the elastomer

matrix. This type of rotational mode would still exist for a

composite material with a stiffer matrix but would then

appear at higher frequency. At higher frequency, the in-

phase rotational mode would most probably interact with

numerous other modes rendering its analysis a lot more com-

plex than in the case of a soft matrix material.

It might be useful to be able to detect wave propagation

sense to shed light on the sense-related characteristics of

waves. Non-linear wave phenomena would appear to provide

such means. To that effect, we would like to cite the work of

Rubino et al.28 who have been able to observe the coupling

of an optical soliton wave to the negative frequency branch

of the optical dispersion relation of bulk CaF2 crystal and

fused silica-optical fiber. Further, we have shown recently in

a molecular dynamics simulation of a non-linear 1D monoa-

tomic crystal the emergence at the edge of the Brillouin zone

of non-linear satellite modes nearly symmetrical about the

frequency-shifted linear mode. The satellite peaks are due to

the wave-number conserving interaction between a short

wavelength “test” wave with positive frequency and long

wavelength modes belonging to both the positive and nega-

tive branches of the dispersion relation.27

Furthermore, PC supporting translational waves have

been demonstrated to possess a plethora of functions result-

ing from unique features in their band structures, namely

spectral properties (stop bands, passing bands, frequency fil-

tering, etc.) or wave number properties (negative refraction,

zero angle refraction, superlensing, etc.).1 The fermion-like

behavior of some rotational waves characterized in this paper

opens up opportunities in the control of the direction of prop-

agation of elastic waves. For instance, we have seen in the

long wavelength limit that the two spinor solution represents

coupling between wave propagating in opposite directions.

The spinor part of the wave function can be projected on the

orthonormal basis
1

0

� �
and

0

1

� �
representing the possible

directions of propagation of the wave. This enables us to

encode information in the relative weight (phase) of the

directions of propagation by controlling the wavenumber, k.

Applications in information processing would emerge from

this control.

Finally, the present study was limited to linear 2D and

1D PC models supporting rotational waves. However, rota-

tional degrees of freedom should lead to geometric non-

linearity. The non-linearity of rotational waves is anticipated

to result in unique functionalities. From a practical point of

view, one can excite rotational modes by stimulating the PC

with transverse waves as shear and rotational modes are

coupled, thus enabling the potential development of rota-

tional wave-based phononic devices.
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